Calculating the H∞-norm of Large Sparse Systems via Chandrasekhar Iterations and Extrapolation

نویسندگان

  • Patrick Chenin
  • Abdelhak Hassouni
  • Younes Chahlaoui
  • Kyle A. Gallivan
  • Paul Van Dooren
چکیده

We describe an algorithm for estimating the H∞-norm of a large linear time invariant dynamical system described by a discrete time state-space model. The algorithm uses Chandrasekhar iterations to obtain an estimate of theH∞-norm and then uses extrapolation to improve these estimates. Résumé. Nous décrivons un algorithme pour estimer la norme H∞ d’un système dynamique linéaire à temps invariant de grande dimension décrit par un modèle d’espace d’état discret. L’algorithme emploie des récurrences de Chandrasekhar pour obtenir une estimation de la norme H∞ puis emploie l’extrapolation pour améliorer ces estimations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculating the H∞-Norm of Large Sparse Systems via Chandrasekhar Iterations and Extrapolations

We describe an algorithm for estimating the H∞-norm of a large linear time invariant dynamical system described by a discrete time state-space model. The algorithm uses Chandrasekhar iterations to obtain an estimate of theH∞-norm and then uses extrapolation to improve these estimates. Résumé. Nous décrivons un algorithme pour estimer la norme H∞ d’un système dynamique linéaire à temps invariant...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Face Recognition in Thermal Images based on Sparse Classifier

Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...

متن کامل

A Smoothing Technique for the Minimum Norm Solution of Absolute Value Equation

One of the issues that has been considered by the researchers in terms of theory and practice is the problem of finding minimum norm solution. In fact, in general, absolute value equation may have infinitely many solutions. In such cases, the best and most natural choice is the solution with the minimum norm. In this paper, the minimum norm-1 solution of absolute value equation is investigated. ...

متن کامل

The H ∞ - norm calculation for large sparse systems ‡

In this paper, we describe an algorithm for estimating the H∞-norm of a large linear time invariant dynamical system described by a discrete time state-space model. The algorithm is designed to be efficient for state-space models defined by {A, B,C, D} where A is a large sparse matrix of order n which is assumed very large relative to the input and output dimensions of the system.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005